首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Simple Fitness Function for Minimum Attribute Reduction
  • 本地全文:下载
  • 作者:Yuebin Su ; Jin Guo ; Zejun Li
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2015
  • 卷号:2015
  • DOI:10.1155/2015/921487
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The goal of minimal attribute reduction is to find the minimal subset of the condition attribute set such that has the same classification quality as . This problem is well known to be NP-hard. When only one minimal attribute reduction is required, it was transformed into a nonlinearly constrained combinatorial optimization problem over a Boolean space and some heuristic search approaches were used. In this case, the fitness function is one of the keys of this problem. It required that the fitness function must satisfy the equivalence between the optimal solution and the minimal attribute reduction. Unfortunately, the existing fitness functions either do not meet the equivalence, or are too complicated. In this paper, a simple and better fitness function based on positive domain was given. Theoretical proof shows that the optimal solution is equivalent to minimal attribute reduction. Experimental results show that the proposed fitness function is better than the existing fitness function for each algorithm in test.
国家哲学社会科学文献中心版权所有