摘要:The aim of this study was to describe the mechanical and sorption features of homogeneous and composite membranes which consist of microcrystalline chitosan (MCCh) and fibrin (Fb) in various proportions as well as the in vitro kinetics of platelet-derived growth factor-BB (PDGF-BB) released from ten types of membranes in the presence or absence of amoxicillin (Am). The films were characterized by Fourier transform infrared (FTIR) spectroscopy, mechanical tests: breaking strength (Bs) and elongation at break (Eb), as well as SEM images, and swelling study. The influence of the form of samples (dry or wet) on Young’s modulus (E) was also examined. The homogeneous MCCh (M1) and composite M3 and M4 (MCCh : Fb = 2 : 1 and 1 : 1) membranes were characterized by good sorption properties and higher mechanical strength, when compared with Fb (M2) membrane. Connecting MCCh with Fb decreases release of PDGF-BB and increases release of Am. The most efficient release of PDGF-BB was observed in the case of M4 (the optimum MCCh : Fb ratio was 1 : 1) membrane. It was found that the degree of PDGF-BB release from the membrane is influenced by the physicochemical and mechanical characteristics of the films and by its affinity to growth factor PDGF-BB.