首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Emergent Technologies in Big Data Sensing: A Survey
  • 本地全文:下载
  • 作者:Ting Zhu ; Sheng Xiao ; Qingquan Zhang
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2015
  • 卷号:2015
  • DOI:10.1155/2015/902982
  • 出版社:Hindawi Publishing Corporation
  • 摘要:When the number of data generating sensors increases and the amount of sensing data grows to a scale that traditional methods cannot handle, big data methods are needed for sensing applications. However, big data is a fuzzy data science concept and there is no existing research architecture for it nor a generic application structure in the field of sensing. In this survey, we explore many scattered results that have been achieved by combining big data techniques with sensing and present our vision of big data in sensing. Firstly, we outline the application categories to generally summarize existing research achievements. Then we discuss the techniques proposed in these studies to demonstrate challenges and opportunities in this field. Finally, we present research trends and list some directions of big data in future sensing. Overall, mobile sensing and its related studies are hot topics, but other large-scale sensing researches are flourishing too. Although there are no “big data” techniques acting as research platforms or infrastructures to support various applications, multiple data science technologies, such as data mining, crowd sensing, and cloud computing, serve as foundations and bases of big data in the world of sensing.
国家哲学社会科学文献中心版权所有