摘要:The neural representation of sound in the auditory cortex is not invariably predetermined by its acoustical properties, but it is constantly reshaped while the listener acquires new experiences. Such plastic changes are a prerequisite for lifelong learning and allow some degree of rehabilitation after brain injuries. Several neurotransmitter systems modulate these plastic changes. In this paper, we focus on how the neurotransmitter dopamine modulates learning-related plasticity in auditory cortex, and how animal and human research can complement each other in providing an experimental approach that has relevance for studying mechanisms of recovery of function.
其他摘要:The neural representation of sound in the auditory cortex is not invariably predetermined by its acoustical properties, but it is constantly reshaped while the listener acquires new experiences. Such plastic changes are a prerequisite for lifelong learning and allow some degree of rehabilitation after brain injuries. Several neurotransmitter systems modulate these plastic changes. In this paper, we focus on how the neurotransmitter dopamine modulates learning-related plasticity in auditory cortex, and how animal and human research can complement each other in providing an experimental approach that has relevance for studying mechanisms of recovery of function.