首页    期刊浏览 2025年06月11日 星期三
登录注册

文章基本信息

  • 标题:AUTOMATIC IMAGE CATEGORIZATION AND ANNOTATION USING K-NN FOR COREL DATASET
  • 本地全文:下载
  • 作者:PATIL M.P., KOLHE S.R.
  • 期刊名称:Advances in Computational Research
  • 印刷版ISSN:0975-3273
  • 电子版ISSN:0975-9085
  • 出版年度:2012
  • 期号:492
  • 页码:108-112
  • 出版社:Bioinfo Publications
  • 摘要:The search of an image in image database using keywords is made powerful due to automatic image annotation. In this paper, an automatic image annotation using K- Nearest Neighbor (K-NN) is presented. The categorization based approach is presented for annotation. Images are first segmented using k-means clustering and then processed to form feature vector. Local features are extracted from the regions of the image. The feature vectors are experimented using K-NN. Our system is validated using ten categories from the COREL images. It is observed that in multiple instance learning using K-NN with color and texture features outperforms for all type of feature vectors.
国家哲学社会科学文献中心版权所有