首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:PROFILE HIDDEN MARKOV MODEL FOR PREDICTING T CELLS EPITOPES
  • 本地全文:下载
  • 作者:MUTHU KUMAR M., SENTHAMARAI KANNAN K
  • 期刊名称:International Journal of Computational Intelligence Techniques
  • 印刷版ISSN:0976-0466
  • 电子版ISSN:0976-0474
  • 出版年度:2011
  • 期号:569
  • 页码:22-25
  • 出版社:Bioinfo Publications
  • 摘要:Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatics method for the prediction of peptide binding to T-cell molecules. The major T-cell contributors are selected for the dataset preparation due to its availability and originality. We used a profile hidden Markov Model (HMM) for the prediction. Sensitivity (96%) and Specificity (~100%) are evaluated for the T cells epitope and nonepitopes from the test data set. The method promises 98 % accuracy and useful for vaccine development.
国家哲学社会科学文献中心版权所有