首页    期刊浏览 2025年12月03日 星期三
登录注册

文章基本信息

  • 标题:Determination of energy gain time dependent in D+T mixture with calculating total energy deposited of deuteron beam in hot spot
  • 本地全文:下载
  • 作者:S.N. Hoseinimotlagh ; M. Jahedi
  • 期刊名称:Asia Pacific Journal of Energy and Environment
  • 印刷版ISSN:2312-2005
  • 电子版ISSN:2312-282X
  • 出版年度:2015
  • 期号:924
  • 页码:7-21
  • 出版社:Asian Business Consortium
  • 摘要:The fast ignition (FI) mechanism, in which a pellet containing the thermonuclear fuel is first compressed by a nanosecond laser pulse, and then irradiated by an intense "ignition" beam, initiated by a high power picosecond laser pulse, is one of the promising approaches to the realization of the inertial confinement fusion (ICF). If the ignition beam is composed of deuterons, an additional energy is delivered to the target, coming from fusion reactions of the beam-target type, directly initiated by particles from the ignition beam .In this work, we choose the D+T fuel and at first step we compute the average reactivity in terms of temperature for first time at second step we use the obtained results of step one and calculate the total deposited energy of deuteron beam inside the target fuel at available physical condition then in third step we introduced the dynamical balance equation of D+T mixture and solve these nonlinear differential coupled equations versus time .In forth step we compute the power density and energy gain under physical optimum conditions and at final step we concluded that maximum energy deposited in the target from D+T and D+D reaction are equal to to19269.39061 keV and 39198.58043 keV respectively.
国家哲学社会科学文献中心版权所有