首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins
  • 本地全文:下载
  • 作者:Dorina Seitaj ; Regina Schauer ; Fatimah Sulu-Gambari
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:43
  • 页码:13278-13283
  • DOI:10.1073/pnas.1510152112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceSeasonal hypoxia is increasing in coastal areas worldwide, as more nutrients are delivered to the coastal ocean and water temperatures are rising due to climate change. Hypoxia reaches a particularly harmful stage when sulfide, which is highly toxic for marine life, is released to the bottom water. Here, we document a natural microbial mechanism that counteracts the release of free sulfide, thus preventing the most adverse stage of seasonal hypoxia. Electricity-generating cable bacteria produce a large pool of oxidized sedimentary iron minerals, which efficiently bind free sulfide. As cable bacteria are likely abundant in many seasonally hypoxic basins worldwide, their "firewall" mechanism may be widespread. Seasonal oxygen depletion (hypoxia) in coastal bottom waters can lead to the release and persistence of free sulfide (euxinia), which is highly detrimental to marine life. Although coastal hypoxia is relatively common, reports of euxinia are less frequent, which suggests that certain environmental controls can delay the onset of euxinia. However, these controls and their prevalence are poorly understood. Here we present field observations from a seasonally hypoxic marine basin (Grevelingen, The Netherlands), which suggest that the activity of cable bacteria, a recently discovered group of sulfur-oxidizing microorganisms inducing long-distance electron transport, can delay the onset of euxinia in coastal waters. Our results reveal a remarkable seasonal succession of sulfur cycling pathways, which was observed over multiple years. Cable bacteria dominate the sediment geochemistry in winter, whereas, after the summer hypoxia, Beggiatoaceae mats colonize the sediment. The specific electrogenic metabolism of cable bacteria generates a large buffer of sedimentary iron oxides before the onset of summer hypoxia, which captures free sulfide in the surface sediment, thus likely preventing the development of bottom water euxinia. As cable bacteria are present in many seasonally hypoxic systems, this euxinia-preventing firewall mechanism could be widely active, and may explain why euxinia is relatively infrequently observed in the coastal ocean.
  • 关键词:sediment biogeochemistry ; cable bacteria ; coastal hypoxia ; sulfur cycling ; microbial competition
国家哲学社会科学文献中心版权所有