摘要:The past several years has witnessed a surge of interest in organometallic trihalide perovskites, which are at the heart of the new generation of solid-state solar cells. Here, we calculated the static conductivity of charged domain walls in n - and p - doped organometallic uniaxial ferroelectric semiconductor perovskite CH3NH3PbI3 using the Landau-Ginzburg-Devonshire (LGD) theory. We find that due to the charge carrier accumulation, the static conductivity may drastically increase at the domain wall by 3 – 4 orders of magnitude in comparison with conductivity through the bulk of the material. Also, a two-dimensional degenerated gas of highly mobile charge carriers could be formed at the wall. The high values of conductivity at domain walls and interfaces explain high efficiency in organometallic solution-processed perovskite films which contains lots of different point and extended defects. These results could suggest new routes to enhance the performance of this promising class of novel photovoltaic materials.