首页    期刊浏览 2025年08月21日 星期四
登录注册

文章基本信息

  • 标题:Chaos in high-dimensional dissipative dynamical systems
  • 本地全文:下载
  • 作者:Iaroslav Ispolatov ; Vaibhav Madhok ; Sebastian Allende
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep12506
  • 出版社:Springer Nature
  • 摘要:For dissipative dynamical systems described by a system of ordinary differential equations, we address the question of how the probability of chaotic dynamics increases with the dimensionality of the phase space. We find that for a system of d globally coupled ODE’s with quadratic and cubic non-linearities with randomly chosen coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from ~10−5 − 10−4 for d = 3 to essentially one for d ~ 50. In the limit of large d , the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity, but not on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling, universality, and for the probability of chaos.
国家哲学社会科学文献中心版权所有