首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Decreased Na+ influx lowers hippocampal neuronal excitability in a mouse model of neonatal influenza infection
  • 本地全文:下载
  • 作者:Hoyong Park ; Ji Eun Yu ; Sungmin Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep13440
  • 出版社:Springer Nature
  • 摘要:Influenza virus infection is one of common infectious diseases occurring worldwide. The human influenza virus can infect the central nervous system and cause brain dysfunctions affecting cognition and spatial memory. It has been previously shown that infection with the influenza viral protein within the hippocampus decreases Ca2+ influx and reduces excitatory postsynaptic currents. However, the neuronal properties of animals surviving neonatal infection have not been investigated. Using a mouse model of neonatal influenza infection, we performed thorough electrophysiological analyses of hippocampal neurotransmission. We found that animals surviving the infection exhibited reduced spontaneous transmission with no significant defects in evoked neurotransmission. Interestingly, the hippocampus of the infected group conducted synaptic transmission with less fidelity upon repeated stimulations and failed to generate action potentials faithfully upon step current injections primarily due to reduced Na+ influx. The reversal potential for the Na+ current was hyperpolarized and the activation of Na+ channels was slower in the infected group while the inactivation process was minimally disturbed. Taken together, our observations suggest that neonatally infected offsprings exhibit noticeable deficits at rest and severe failures when higher activity is required. This study provides insight into understanding the cellular mechanisms of influenza infection-associated functional changes in the brain.
国家哲学社会科学文献中心版权所有