首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:RBMMMDA: predicting multiple types of disease-microRNA associations
  • 本地全文:下载
  • 作者:Xing Chen ; Chenggang Clarence Yan ; Xiaotian Zhang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep13877
  • 出版社:Springer Nature
  • 摘要:Accumulating evidences have shown that plenty of miRNAs play fundamental and important roles in various biological processes and the deregulations of miRNAs are associated with a broad range of human diseases. However, the mechanisms underlying the dysregulations of miRNAs still have not been fully understood yet. All the previous computational approaches can only predict binary associations between diseases and miRNAs. Predicting multiple types of disease-miRNA associations can further broaden our understanding about the molecular basis of diseases in the level of miRNAs. In this study, the model of Restricted Boltzmann machine for multiple types of miRNA-disease association prediction (RBMMMDA) was developed to predict four different types of miRNA-disease associations. Based on this model, we could obtain not only new miRNA-disease associations, but also corresponding association types. To our knowledge, RBMMMDA is the first model which could computationally infer association types of miRNA-disease pairs. Leave-one-out cross validation was implemented for RBMMMDA and the AUC of 0.8606 demonstrated the reliable and effective performance of RBMMMDA. In the case studies about lung cancer, breast cancer, and global prediction for all the diseases simultaneously, 50, 42, and 45 out of top 100 predicted miRNA-disease association types were confirmed by recent biological experimental literatures, respectively.
国家哲学社会科学文献中心版权所有