首页    期刊浏览 2024年09月29日 星期日
登录注册

文章基本信息

  • 标题:Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction
  • 本地全文:下载
  • 作者:Shoji Yoshida ; Yu Kobayashi ; Ryuji Sakurada
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep14808
  • 出版社:Springer Nature
  • 摘要:Transition-metal dichalcogenide layered materials, consisting of a transition-metal atomic layer sandwiched by two chalcogen atomic layers, have been attracting considerable attention because of their desirable physical properties for semiconductor devices, and a wide variety of pn junctions, which are essential building blocks for electronic and optoelectronic devices, have been realized using these atomically thin structures. Engineering the electronic/optical properties of semiconductors by using such heterojunctions has been a central concept in semiconductor science and technology. Here, we report the first scanning tunneling microscopy/spectroscopy (STM/STS) study on the electronic structures of a monolayer WS2/Mo1−xWxS2 heterojunction that provides a tunable band alignment. The atomically modulated spatial variation in such electronic structures, i.e., a microscopic basis for the band structure of a WS2/Mo1−xWxS2 heterojunction, was directly observed. The macroscopic band structure of Mo1−xWxS2 alloy was well reproduced by the STS spectra averaged over the surface. An electric field of as high as 80 × 106 Vm−1 was observed at the interface for the alloy with x = 0.3, verifying the efficient separation of photoexcited carriers at the interface.
国家哲学社会科学文献中心版权所有