摘要:We investigate instability mechanisms in amorphous In-Ga-Zn-O transistors based on bias and illumination stress-recovery experiments coupled with analysis using stretched exponentials and inverse Laplace transform to retrieve the distribution of activation energies associated with metastable oxygen defects. Results show that the recovery process after illumination stress is persistently slow by virtue of defect states with a broad range, 0.85 eV to 1.38 eV, suggesting the presence of ionized oxygen vacancies and interstitials. We also rule out charge trapping/detrapping events since this requires a much smaller activation energy ~0.53 eV, and which tends to be much quicker. These arguments are supported by measurements using a novel gate-pulse spectroscopy probing technique that reveals the post-stress ionized oxygen defect profile, including anti-bonding states within the conduction band.