首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans
  • 本地全文:下载
  • 作者:Nan Zhao ; Brigitte E. Martin ; Chun-Kai Yang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep15778
  • 出版社:Springer Nature
  • 摘要:Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2–6Galβ, human-origin viruses could bind glycans with Neu5Acα2–8Neu5Acα2–8Neu5Ac and Neu5Gcα2–6Galβ1–4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2 – 3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.
国家哲学社会科学文献中心版权所有