首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Classification of Efficient Imputation Method for Analyzing Missing Values
  • 本地全文:下载
  • 作者:S.Kanchana ; Dr. Antony Selvadoss Thanamani
  • 期刊名称:International Journal of Computer Trends and Technology
  • 电子版ISSN:2231-2803
  • 出版年度:2014
  • 卷号:12
  • 期号:4
  • 页码:193-195
  • DOI:10.14445/22312803/IJCTT-V12P138
  • 出版社:Seventh Sense Research Group
  • 摘要:In Statistical analysis, missing data is a common problem for data quality. Many real datasets have missing data. Imputation preserves all cases by replacing missing data with a probable value based on other available information. Once all missing values have been imputed, the data set can be analyzed using standard techniques for complete data. This paper aim is to describe the efficient imputation method like Mean, Median, Refined Mean, Standard Deviation, Linear Regression, Discretization based method and some of clustering techniques like KMean and KNN methods which are used for imputing missing values in the dataset. The datasets are taken from the UCI ML repository. The results are compared in terms of accuracy.
  • 关键词:Clustering Techniques; Discretization; K-Mean; KNN; Mean; Median; Refined Mean; Standard Deviation.
国家哲学社会科学文献中心版权所有