首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Machine Learning Techniques for Automatic Classification of Patients with Fibromyalgia and Arthritis
  • 本地全文:下载
  • 作者:Begoña Garcia-Zapirain ; Yolanda Garcia-Chimeno ; Heather Rogers
  • 期刊名称:International Journal of Computer Trends and Technology
  • 电子版ISSN:2231-2803
  • 出版年度:2015
  • 卷号:25
  • 期号:3
  • 页码:149-152
  • DOI:10.14445/22312803/IJCTT-V25P129
  • 出版社:Seventh Sense Research Group
  • 摘要:The ADABoost classifier is a very powerful tool for helping to diagnose multiple diseases. With some critical features related to the pathology, the classifier can automatically perform the subjects classification. In this way, the automatic classification is a useful aid for the doctor to make the diagnosis. In this manuscript, the authors have achieved a specific classification for fibromyalgia and rheumatoid arthritis using medicosocial and psychopathological features obtained from specific questionnaires. It has obtained success rate above 89%, reaching a 97.8596% in the best case. With these results, it can avoid the innumerable and uncomfortable medical tests to diagnose the pathology, saving time and money.
  • 关键词:AdaBoost; classification; Fibromyalgia; arthritis.
国家哲学社会科学文献中心版权所有