首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Efficient Intrusion Detection using Weighted K-means Clustering and Naïve Bayes Classification
  • 本地全文:下载
  • 作者:Yousef Emami ; Marzieh Ahmadzadeh ; Mohammad Salehi
  • 期刊名称:Journal of Emerging Trends in Computing and Information Sciences
  • 电子版ISSN:2079-8407
  • 出版年度:2014
  • 卷号:5
  • 期号:8
  • 页码:620-623
  • 出版社:ARPN Publishers
  • 摘要:Intrusion detection system (IDS) is becoming a vital component to secure the network. A successful intrusion detection system requires high accuracy and detection rate. In this paper a hybrid approach for intrusion detection system based on data mining techniques is proposed. The principal ingredients of the approach are weighted k-means clustering and naive bayes classification. The C5.0 algorithm is used for ranking attributes, so the attributes receive a weight which is used in K-means clustering therefore accuracy of clustering is increased.
  • 关键词:Intrusion Detection System; K-means Clustering; Naïve Bayes Classification
国家哲学社会科学文献中心版权所有