期刊名称:International Journal of Energy and Environment
印刷版ISSN:2076-2895
电子版ISSN:2076-2909
出版年度:2015
卷号:6
期号:2
页码:201-226
出版社:International Energy and Environment Foundation (IEEF)
摘要:Chemical-looping combustion (CLC) is currently considered as a leading technology for reducing the economic cost of CO2 capture. In this paper, several process simulations of chemical-looping combustion are conducted using the ASPEN Plus software. The entire CLC process from the beginning of coal gasification to the reduction and oxidation of the oxygen carrier is modeled and validated against experimental data. The energy balance of each major component of the CLC process, e.g., the fuel and air reactors and air/flue gas heat exchangers is examined. Different air flow rates and oxygen carrier feeding rates are used in the simulations to obtain the optimum ratio of coal, air, and oxygen carrier that produces the maximum power. Two scaled-up simulations are also conducted to investigate the influence of increase in coal feeding on power generation. It is demonstrated that the optimum ratio of coal, air supply, and oxygen carrier for maximum power generation remains valid for scaled-up cases with substantially larger coal feeding rates; the maximum power generation scales up linearly by using the process simulation models in ASPEN Plus. The energy output from four different types of coals is compared, and the optimum ratio of coal, air supply and oxygen carrier for maximum power generation for each type of coal is determined .