出版社:Consejo Superior de Investigaciones Científicas
摘要:Sustainable development in construction is based on three fundamental pillars: economic, environmental and social. This type of approach aims to identify the best possible solutions for sustainably developing structures by conducting a joint evaluation of the impact on those three pillars. The proposed methodology incorporates metadata on the Spanish construction sector. First, a discrete database is generated with 360 alternatives covering a range of common solutions in residential building. A Pareto algorithm is utilized to select the optimal choices and the wide range of solutions is reduced to the 5 % of the initial group. The project manager is therefore provided with an objective assessment of suitable structural alternatives including the overall joint economic, social, and environmental impact. The results obtained demonstrate the importance and utility of the proposed methodology for sustainable construction.
其他摘要:Sustainable development in construction is based on three fundamental pillars: economic, environmental and social. This type of approach aims to identify the best possible solutions for sustainably developing structures by conducting a joint evaluation of the impact on those three pillars. The proposed methodology incorporates metadata on the Spanish construction sector. First, a discrete database is generated with 360 alternatives covering a range of common solutions in residential building. A Pareto algorithm is utilized to select the optimal choices and the wide range of solutions is reduced to the 5 % of the initial group. The project manager is therefore provided with an objective assessment of suitable structural alternatives including the overall joint economic, social, and environmental impact. The results obtained demonstrate the importance and utility of the proposed methodology for sustainable construction.
关键词:Construcción sostenible; hormigón armado; forjado unidireccional; impacto social; análisis ciclo de vida
其他关键词:Sustainable construction; reinforced concrete; one-way slab; social impact; life cycle analysis