首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Computation of Sample Mean Range of the Generalized Laplace Distribution
  • 本地全文:下载
  • 作者:Kamal Samy Selim
  • 期刊名称:Pakistan Journal of Statistics and Operation Research
  • 印刷版ISSN:2220-5810
  • 出版年度:2015
  • 卷号:11
  • 期号:3
  • 页码:283-298
  • DOI:10.18187/pjsor.v11i3.718
  • 语种:English
  • 出版社:College of Statistical and Actuarial Sciences
  • 摘要:A generalization of Laplace distribution with location parameter $\theta$, $\, -\infty<\theta<\infty$, and scale parameter $\phi>0,$ is defined by introducing a third parameter $\alpha>0$ as a shape parameter. One tractable class of this generalization arises when $\alpha$ is chosen such that 1/$\alpha$ is a positive integer. In this article, we derive explicit forms for the moments of order statistics, and mean values of the range, quasi--ranges, and spacings of a random sample corresponded to any member of this class. For values of the shape parameter $\alpha$ equal $1/i, i=1,\dotsb,8$, and sample sizes equal 2(1)15 short tables are computed for the exact mean values of the range, quasi--ranges, and spacings. Means and variances of all order statistics are also tabulated.
  • 其他摘要: A generalization of Laplace distribution with location parameter $\theta$, $\, -\infty<\theta<\infty$, and scale parameter $\phi>0,$ is defined by introducing a third parameter  $\alpha>0$ as a shape parameter. One tractable class of this generalization arises when $\alpha$ is chosen such that 1/$\alpha$ is a positive integer. In this article, we derive explicit forms for the moments of order statistics, and mean values of the range, quasi--ranges, and spacings of a random sample corresponded to any member of this class. For values of the shape parameter $\alpha$ equal $1/i, i=1,\dotsb,8$, and sample  sizes equal 2(1)15 short tables are computed for the exact mean values of the range, quasi--ranges, and spacings. Means and variances of all order statistics are also tabulated.
  • 关键词:Generalized Laplace distribution; Order statistics; Range; Quasi-ranges; Multinomial expansion
国家哲学社会科学文献中心版权所有