出版社:Electronics and Telecommunications Research Institute
摘要:The problem of the sentence-based pronunciation evaluation task is defined in the context of subjective criteria. Three subjective criteria (that is, the minimum subjective word score, the mean subjective word score, and first impression) are proposed and modeled with the combination of word-based assessment. Then, the subjective criteria are approximated with objective sentence pronunciation scores obtained with the combination of word-based metrics. No a priori studies of common mistakes are required, and class-based language models are used to incorporate incorrect and correct pronunciations. Incorrect pronunciations are automatically incorporated by making use of a competitive lexicon and the phonetic rules of students' mother and target languages. This procedure is applicable to any second language learning context, and subjective-objective sentence score correlations greater than or equal to 0.5 can be achieved when the proposed sentence-based pronunciation criteria are approximated with combinations of word-based scores. Finally, the subjective-objective sentence score correlations reported here are very comparable with those published elsewhere resulting from methods that require a priori studies of pronunciation errors.
关键词:Computer-aided pronunciation training;subjective criteria;second language learning;ASR