出版社:Electronics and Telecommunications Research Institute
摘要:In this paper, we study the problem of domain adaptation for structural support vector machines (SVMs). We consider a number of domain adaptation approaches for structural SVMs and evaluate them on named entity recognition, part-of-speech tagging, and sentiment classification problems. Finally, we show that a prior model for structural SVMs outperforms other domain adaptation approaches in most cases. Moreover, the training time for this prior model is reduced compared to other domain adaptation methods with improvements in performance.
关键词:Domain adaptation;structural SVMs;PRIOR model for structural SVMs