首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A New Support Vector Compression Method Based on Singular Value Decomposition
  • 本地全文:下载
  • 作者:Yoon, Sang-Hun ; Lyuh, Chun-Gi ; Chun, Ik-Jae
  • 期刊名称:ETRI Journal
  • 印刷版ISSN:1225-6463
  • 电子版ISSN:2233-7326
  • 出版年度:2011
  • 卷号:33
  • 期号:4
  • 页码:652-655
  • DOI:10.4218/etrij.11.0210.0349
  • 语种:English
  • 出版社:Electronics and Telecommunications Research Institute
  • 摘要:In this letter, we propose a new compression method for a high dimensional support vector machine (SVM). We used singular value decomposition (SVD) to compress the norm part of a radial basis function SVM. By deleting the least significant vectors that are extracted from the decomposition, we can compress each vector with minimized energy loss. We select the compressed vector dimension according to the predefined threshold which can limit the energy loss to design criteria. We verified the proposed vector compressed SVM (VCSVM) for conventional datasets. Experimental results show that VCSVM can reduce computational complexity and memory by more than 40% without reduction in accuracy when classifying a 20,958 dimension dataset.
  • 关键词:RBF SVM;SVD;vector compression
国家哲学社会科学文献中心版权所有