期刊名称:Journal of Nutritional Science and Vitaminology
印刷版ISSN:0301-4800
电子版ISSN:1881-7742
出版年度:2015
卷号:61
期号:Supplement
页码:S86-S88
DOI:10.3177/jnsv.61.S86
出版社:Center for Academic Publications Japan
摘要:There are several thermosensitive transient receptor potential (TRP) ion channels including capsaicin receptor, TRPV1. Food components activating TRPV1 inhibit body fat deposition through sympathetic nerve stimulation. TRPA1 is another pungency sensor for pungent compounds and is mainly coexpressed with TRPV1 in sensory nerve endings. Therefore, TRPA1 activation is expected to have an anti-obesity effect similar to TRPV1 activation. We have searched for agonists for TRPV1 and TRPA1 in vitro from Asian spices by the use of TRPV1- and TRPA1-expressing cells. Further, we performed food component addition tests to high-fat and high-sucrose diets in mice. We found capsiate, capsiconiate, capsainol from hot and sweet peppers, several piperine analogs from black pepper, gingeriols and shogaols from ginger, and sanshools and hydroxysanshools from sansho (Japanese pepper) to be TRPV1 agonists. We also identified several sulfides from garlic and durian, hydroxy fatty acids from royal jelly, miogadial and miogatrial from mioga ( Zingiber mioga ), piperine analogs from black pepper, and acetoxychavicol acetate (ACA) from galangal ( Alpinia galanga ) as TRPA1 agonists. Piperine addition to diets diminished visceral fats and increased the uncoupling protein 1 (UCP1) in interscapular brown adipose tissue (IBAT), and black pepper extract showed stronger effects than piperine. Cinnamaldehyde and ACA as TRPA1 agonists inhibited fat deposition and increased UCP1. We found that several agonists of TRPV1 and TRPA1 and some agonists of TRPV1 and TRPA1 inhibit visceral fat deposition in mice. The effects of such compounds on humans remain to be clarified, but we expect that they will be helpful in the prevention of obesity.