期刊名称:International Journal of Computer Science and Information Technologies
电子版ISSN:0975-9646
出版年度:2014
卷号:5
期号:4
页码:5880-5886
出版社:TechScience Publications
摘要:Recent technological advances in wireless communications, mobile computation, and sensor technologies have enabled the development of low-cost, miniature, lightweight, intelligent wireless sensor devices or “motes”. A collection of these devices can be placed strategically on the key positions of the human body and connected by means of a wireless network to form a Wireless Body Area Network (WBAN). WBAN has recently attracted a great deal of attention from researchers both in academia as well as industry. This is primarily due to its unique capabilities and promising applications in areas like healthcare, fitness, sports, military and security. In the healthcare domain, WBAN promises to revolutionize healthcare system through allowing inexpensive, unobtrusive, non-invasive, ambulatory monitoring of human’s health-status anytime, anywhere. In this paper, we propose a WBAN-based prototype system for remotely monitoring mobile user’s physical activities and health-status via the Internet. The system consists of a WBAN and a remote monitoring server (RS). The WBAN comprises a personal server (PS) and a number of custom-made wireless sensor nodes each featuring a motion sensor for monitoring physical activity, and a temperature sensor for monitoring body temperature. The PS is a minicomputer equipped with a GPS receiver for tracking and monitoring user’s location, a ZigBee module for communication with the sensor nodes, and a GPRS module for communication with the RMS. The RMS is an internet enabled PC. The sensors measure body motions and temperature and send the measurement data to the PS via a ZigBee network. The PS collects the data, process them and uploads them via GPRS to the RMS where the data can be visualized and displayed for user inspection and/or stored in a file system/database for post analysis. Currently the system is in a prototype phase and is developed as a proof-of-concept. The proposed system, once perfected, can be used in different application scenarios. For example, for remotely monitoring elderly people, people with disabilities, patients undergoing physical rehabilitations, athletes or soldiers during training/exercises, etc.