首页    期刊浏览 2024年11月22日 星期五
登录注册

文章基本信息

  • 标题:A Method for Privacy Preserving Data Mining in Secure Multiparty Computation using Hadamard Matrix
  • 本地全文:下载
  • 作者:Neha Pathak ; Anand Rajavat
  • 期刊名称:International Journal of Computer Science and Information Technologies
  • 电子版ISSN:0975-9646
  • 出版年度:2014
  • 卷号:5
  • 期号:6
  • 页码:8246-8249
  • 出版社:TechScience Publications
  • 摘要:Secure multiparty computation allows multiple parties to participate in a computation. SMC (secure multiparty computation) assumes n parties where n>1. All the parties jointly compute a function. Privacy preserving data mining has become an emerging field in the secure multiparty computation. Privacy preserving data mining preserves the privacy of individual's data. Privacy preserving data mining outputs have the property that the only information learned by the different parties is only the output of the algorithm. In this paper, we use a mathematical function hadamard matrix. All the computation multiplied by the hadamard matrix. Using this, security and privacy of the individual’s data increased. Thus, we can say that this protocol fulfill the requirement of privacy and security
  • 关键词:Privacy preservation; secure multiparty;computation (SMC); secures sum protocol; hadamard matrix.
国家哲学社会科学文献中心版权所有