首页    期刊浏览 2025年06月15日 星期日
登录注册

文章基本信息

  • 标题:Effect of Distance measures on Partitional Clustering Algorithms using Transportation Data
  • 本地全文:下载
  • 作者:Sesham Anand ; P Padmanabham ; A Govardhan
  • 期刊名称:International Journal of Computer Science and Information Technologies
  • 电子版ISSN:0975-9646
  • 出版年度:2015
  • 卷号:6
  • 期号:6
  • 页码:5308-5312
  • 出版社:TechScience Publications
  • 摘要:Similarity/dissimilarity measures in clustering algorithms play an important role in grouping data and finding out how well the data differ with each other. The importance of clustering algorithms in transportation data has been illustrated in previous research. This paper compares the effect of different distance/similarity measures on a partitional clustering algorithm kmedoid(PAM) using transportation dataset. A recently developed data mining open source software ELKI has been used and results illustrated.
  • 关键词:clustering; transportation Data; partitional;algorithms; cluster validity; distance measures
国家哲学社会科学文献中心版权所有