首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Detecting Patients with Parkinson�s disease using Mel Frequency Cepstral Coefficients and Support Vector Machines
  • 本地全文:下载
  • 作者:Achraf Benba ; Abdelilah Jilbab ; Ahmed Hammouch
  • 期刊名称:International Journal on Electrical Engineering and Informatics
  • 印刷版ISSN:2085-6830
  • 出版年度:2015
  • 卷号:7
  • 期号:2
  • DOI:10.15676/ijeei.2015.7.2.10
  • 出版社:School of Electrical Engineering and Informatics
  • 摘要:In order to develop the assessment of speech disorders for detecting patientswith Parkinson’s disease (PD), we have collected 34 sustained vowel / a /, from 34subjects including 17 PD patients. We subsequently extracted from 1 to 20 coefficientsof the Mel Frequency Cepstral Coefficients (MFCCs) from each individual. To extractthe voiceprint from each individual, we compressed the frames by calculating theiraverage value. For classification, we used the Leave-One-Subject-Out (LOSO)validation scheme and the Support Vector Machines (SVMs) with its different types ofkernels, (i.e.; RBF, Linear and polynomial). The best classification accuracy achievedwas 91.18% using the first 12 coefficients of the MFCCs by Linear kernels SVMs
  • 关键词:Voice analysis; Parkinson’s disease; Mel Frequency Cepstral Coefficients;Voiceprint. Leave One Subject Out; Support Vector Machines
国家哲学社会科学文献中心版权所有