首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:A metabolic strategy to enhance long-term survival by Phx1 through stationary phase-specific pyruvate decarboxylases in fission yeast
  • 本地全文:下载
  • 作者:Ji-Yoon Kim ; Eun-Jung Kim ; Luis Lopez-Maury
  • 期刊名称:Aging
  • 出版年度:2014
  • 卷号:6
  • 期号:7
  • 页码:587-601
  • 出版社:U.S.Department of Health & Human Service
  • 摘要:In the fission yeastSchizosaccharomyces pombe, the stationary phase-specific transcription factor Phx1 contributes to long-term survival, stress tolerance, and meiosis. We identified Phx1-dependent genes through transcriptome analysis, and further analyzed those related with carbohydrate and thiamine metabolism, whose expression decreased in ∆phx1. Consistent with mRNA changes, the level of thiamine pyrophosphate (TPP) and TPP-utilizing pyruvate decarboxylase activity that converts pyruvate to acetaldehyde were also reduced in the mutant. Therefore, Phx1 appears to shift metabolic flux by diverting pyruvate from the TCA cycle and respiration to ethanol fermentation. Among the four predicted genes for pyruvate decarboxylase, only the Phx1-dependent genes (pdc201+ and pdc202+) contributed to long-term survival as judged by mutation and overexpression studies. These findings indicate that the Phx1-mediated long-term survival is achieved primarily through increasing the synthesis and activity of pyruvate decarboxylase. Consistent with this hypothesis, we observed that Phx1 curtailed respiration when cells entered stationary phase. Introduction of Δphx1 mutation compromised the long-lived phenotypes of Δpka1 and Δsck2 mutants that are devoid of pro-aging kinases of nutrient-signalling pathways, and of the Δpyp1 mutant with constitutively activated stress-responsive kinase Sty1. Therefore, achievement of long-term viability through both nutrient limitation and anti-stress response appears to be dependent on Phx1.
  • 关键词:Phx1; stationary phase; long-term survival; metabolic flux; pyruvate decarboxylases; ethanol
国家哲学社会科学文献中心版权所有