摘要:If is a geodesic metric space and , a geodesic triangle is the union of the three geodesics , , and in . The space is -hyperbolic (in the Gromov sense) if any side of is contained in a -neighborhood of the union of the two other sides, for every geodesic triangle in . The study of the hyperbolicity constant in networks is usually a very difficult task; therefore, it is interesting to find bounds for particular classes of graphs. A network is circulant if it has a cyclic group of automorphisms that includes an automorphism taking any vertex to any other vertex. In this paper we obtain several sharp inequalities for the hyperbolicity constant of circulant networks; in some cases we characterize the graphs for which the equality is attained.