摘要:Remote monitoring of heart disease provides the means to keep patients under continuous supervision. In this paper, we introduce the design and implementation of a remote monitoring medical system for heart failure prediction and management. The three-part system includes a patient-end for data collection, a medical data center as data storage and analysis, and a doctor-end to diagnosis and intervention. The main objective of the system is to prognose the occurrence risk of heart failure (HF) confirmed by the level of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) based on the changes of the patients’ (systolic and diastolic) blood pressure and body weight that are measured noninvasively in a home environment. The prediction of HF and non-HF patients was achieved by a structured support vector machine (SVM) classification algorithm. With the present system, we also proposed a scoring method to interpret the long-term risk of HF. We demonstrated the efficiency of the system with a pilot clinical study of 34 samples, where the NT-proBNP test was used to help train the prediction model as well as check the prediction results for our system. Results showed an accuracy of 79.4% for predicting HF on day 7 based on daily body weight and blood pressure data acquired over 30 days.