首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Comparison of Kernel Selection for Support Vector Machines Using Diabetes Dataset
  • 本地全文:下载
  • 作者:Tapas Ranjan Baitharu ; Subhendu Ku. Pani ; Sunil kumar Dhal
  • 期刊名称:Journal of Computer Sciences and Applications
  • 印刷版ISSN:2328-7268
  • 电子版ISSN:2328-725X
  • 出版年度:2016
  • 卷号:3
  • 期号:6
  • 页码:181-184
  • DOI:10.12691/jcsa-3-6-14
  • 出版社:Science and Education Publishing
  • 摘要:One of the major problems in the study of Support vector machine (SVM) is kernel selection, that’s based necessarily on the problem of deciding a kernel function for a particular task and dataset. By contradiction to other machine learning algorithms, SVM focuses on maximizing the generalisation ability, which depends on the empirical risk and the complexity of the machine. We were focused on SVM trained using linear, polynomial, puk and Radial Basic Function (RBF) kernels. A preliminary study has been made between SVM using the best choice of kernel. Results had revealed that SVM trained using Linear Kernel is the best choice for dealing with Diabetes dataset.
  • 关键词:data mining; machine learning algorithms; support vector machine; kernels function
国家哲学社会科学文献中心版权所有