首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Parameter Estimation of Loranz Chaotic Dynamic System Using Constriction factor approach in Particle Swarm Optimization (CFAPSO)
  • 本地全文:下载
  • 作者:Reza Gholipour ; Alireza Khosravi ; Zahra Rahmani
  • 期刊名称:International Journal of Mechatronics, Electrical and Computer Technology
  • 印刷版ISSN:2305-0543
  • 出版年度:2012
  • 卷号:2
  • 期号:5
  • 页码:158-168
  • 出版社:Austrian E-Journals of Universal Scientific Organization
  • 摘要:An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Constriction factor approach in particle swarm optimization (CFAPSO) is a new member of meta-heuristics. This paper focuses on using the CFAPSO to solve this problem. Simulation results demonstrate the merit, effectiveness and robustness of CFAPSO Algorithm.
  • 关键词:Loranz chaotic system; Parameter estimation; CFAPSO Algorithm; ; Mean squared errors.
国家哲学社会科学文献中心版权所有