首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:An intelligent Fault Diagnosis Method Based on Neural Networks for Photovoltaic System
  • 本地全文:下载
  • 作者:Mohamed Louzazni ; Elhassan Aroudam
  • 期刊名称:International Journal of Mechatronics, Electrical and Computer Technology
  • 印刷版ISSN:2305-0543
  • 出版年度:2014
  • 卷号:4
  • 期号:11
  • 页码:602-609
  • 出版社:Austrian E-Journals of Universal Scientific Organization
  • 摘要:In this pap er we pro pos e an intelligen t met hod to detect fault diag nos is in the p hoto voltaic (PV) syst ems by applied the artificial neu ral n etwo rk (A NN). Firstly, the t emperatu re of the PV modu le is used to locat e the fau lt in the PV s ystem, an d us ually there is an obvio us t emperatu re difference between the fault and normal PV modu le. The current an d v oltag e of the maximum power po int tracking (MPPT) and the t emperatu re of the PV modu les are th e in p ut parameters of th e A NN, and the outp ut is the resu lt of the fault det ectio n. Th e simulation resu lt un der b oth normal and fault cond ition s sh ow t hat t he ou tput s of the A NN are almo st co nsist ent with t he expect ed v alue, and the prop osed fau lt diagnos is meth od can n ot on ly d etect and find the lo cation of the fault and determine the t ype of th e fau lt rap idly and accu rately.
  • 关键词:Fault Diagn osis ; Pho tovo ltaic; Art ificial Neural Network; Temperature; MPPT.
国家哲学社会科学文献中心版权所有