首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Infrequent Data Binning Method for Improving Prediction Performance: The Case of Rice Productivity Prediction model
  • 本地全文:下载
  • 作者:Ik Hoon Jang ; Young Chan Choe
  • 期刊名称:International Journal of Software Engineering and Its Applications
  • 印刷版ISSN:1738-9984
  • 出版年度:2014
  • 卷号:8
  • 期号:9
  • 页码:69-80
  • DOI:10.14257/ijseia.2014.8.9.06
  • 出版社:SERSC
  • 摘要:This study investigates ways to improve the performance of rice productivity prediction model by employing the infrequent data binning method. Binning in this study is a technique to reassign infrequent data outside a specific scope, back in to the boundary value of the scope. The main findings of this study include: first, the binning method based on reassigning infrequent data contributes to improving the prediction performance of the model in question. Second, the effects of improvement differ depending on the length of the tail of a distribution. Third, there are no interaction effects due to combination of binned variables involving in different distribution categories with different length of long-tail
  • 关键词:Improvement of Prediction Performance; Infrequent Data Binning; Predicting ; Rice Productivity; Neural Network Method
国家哲学社会科学文献中心版权所有