期刊名称:International Journal of Hybrid Information Technology
印刷版ISSN:1738-9968
出版年度:2015
卷号:8
期号:2
页码:1-10
DOI:10.14257/ijhit.2015.8.2.01
出版社:SERSC
摘要:Ant colony optimization (ACO) algorithm is a new heuristic algorithm which has been demonstrated a successful technology and applied to solving complex optimization problems. But the ACO exists the low solving precision and premature convergence problem, particle swarm optimization (PSO) algorithm is introduced to improve performance of the ACO algorithm. A novel hybrid optimization (HPSACO) algorithm based on combining collaborative strategy, particle swarm optimization and ant colony optimization is proposed for the traveling salesman problems in this paper. The HPSACO algorithm makes use of the exploration capability of the PSO algorithm and stochastic capability of the ACO algorithm. The main idea of the HPSACO algorithm uses the rapidity of the PSO algorithm to obtain a series of initializing optimal solutions for dynamically adjusting the initial pheromone distribution of the ACO algorithm. Then the parallel search ability of the he ACO algorithm are used to obtain the optimal solution of solving problem. Finally, various scale TSP are selected to verify the effectiveness and efficiency of the proposed HPSACO algorithm. The simulation results show that the proposed HPSACO algorithm takes on the better search precision, the faster convergence speed and avoids the stagnation phenomena.