首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Support Vector Machine Optimization Based On Magnetic Bacteria Optimization Algorithm
  • 本地全文:下载
  • 作者:Ce Yang ; Zhaofeng Chen
  • 期刊名称:International Journal of Hybrid Information Technology
  • 印刷版ISSN:1738-9968
  • 出版年度:2015
  • 卷号:8
  • 期号:9
  • 页码:381-388
  • DOI:10.14257/ijhit.2015.8.9.35
  • 出版社:SERSC
  • 摘要:Classification performance of support vector machine (SVM) will be influenced by its model parameters. For this problem, a new method named magnetic bacteria optimization algorithm (MBOA) that optimizes the parameters of SVM is proposed. It is tested by the UCI standard data sets and compared with the other optimization algorithms, such as particle swarm optimization (PSO). Experimental results show that the MBOA can optimize the parameters of SVM well and has better performance than the compared algorithms.
  • 关键词:Magnetic Bacteria Optimization Algorithm; ; ; Support Vector Machine; ; Optimization; Classification Performance
国家哲学社会科学文献中心版权所有