首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A Novel Method for Detection of Internet Worm Malcodes using Principal Component Analysis and Multiclass Support Vector Machine
  • 本地全文:下载
  • 作者:S.Divya ; Dr.G.Padmavathi
  • 期刊名称:International Journal of Security and Its Applications
  • 印刷版ISSN:1738-9976
  • 出版年度:2014
  • 卷号:8
  • 期号:5
  • 页码:391-402
  • DOI:10.14257/ijsia.2014.8.5.34
  • 出版社:SERSC
  • 摘要:Internet worms are malware programs that imitate themselves and spread around the network. Internet worm, a wide spreading malcode exploits vulnerability in the operating system, hard disk, software and web browsers. This paper analyzes and classifies the Internet worm, depending on the training signatures. This work presents the Internet worm detection mechanism, using Principal Component Analysis (PCA) and Support Vector Machine (SVM). A Selective sampling technique is applied to maximize the performance of the classifier and to reduce misleading data instances. The results obtained show improved memory utilization, detection time and detection accuracy for Internet worms.
  • 关键词:Malcode; Selective sampling; Multiclass SVM and PCA
国家哲学社会科学文献中心版权所有