首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:An Optimized k-means Algorithm for Selecting Initial Clustering Centers
  • 本地全文:下载
  • 作者:Jianhui Song ; Xuefei Li ; Yanju Liu
  • 期刊名称:International Journal of Security and Its Applications
  • 印刷版ISSN:1738-9976
  • 出版年度:2015
  • 卷号:9
  • 期号:10
  • 页码:177-186
  • DOI:10.14257/ijsia.2015.9.10.16
  • 出版社:SERSC
  • 摘要:Selecting the initial clustering centers randomly will cause an instability final result, and make it easy to fall into local minimum. To improve the shortcoming of the existing k- means clustering center selection algorithm, an optimized k-means algorithm for selecting initial clustering centers is proposed in this paper. When the number of the sample's maximum density parameter value is not unique, the distance between the plurality sample s with maximum density parameter values is calculated and compared with the average distance of the whole sample sets. The k optimized initial clustering centers are selected by combing the algorithm proposed in this paper with maximum distance means. The algorithm proposed in this paper is tested through the UCI dataset. The experimental results show the superiority of the proposed algorithm.
  • 关键词:k-means; clustering center; density parameter; maximum distance
国家哲学社会科学文献中心版权所有