首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Neural Network and Data Fusion in the Application Research of Natural Gas Pipeline Leakage Detection
  • 本地全文:下载
  • 作者:Bingkun Gao ; Guojun Shi ; Qing Wang
  • 期刊名称:International Journal of Signal Processing, Image Processing and Pattern Recognition
  • 印刷版ISSN:2005-4254
  • 出版年度:2013
  • 卷号:6
  • 期号:6
  • 页码:129-140
  • DOI:10.14257/ijsip.2013.6.6.13
  • 出版社:SERSC
  • 摘要:For natural gas pipeline, it has a leak or not is critical. The most commonly problems in the pipeline leak detection methods are the difficulties to identify, inaccuracy to locate, thus, the natural gas pipeline detection is difficult to be applied, therefore, the use of neural network multi-sensor data fusion of the natural gas pipeline leak detection is particularly important. In this paper, the method is proposed based on RBF neural network and the data fusion of D-S evidence theory for detecting the pipeline leak. Extracting neural network's input parameters through wavelet denoising, then substitute them into neural network and calculate them by multi-sensor data fusion algorithm so as to acquire leaking information
  • 关键词:Leak detection; RBF neural network; Wavelet denoising; Data fusion; D-S ; evidence theory
国家哲学社会科学文献中心版权所有