首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Robust Support Vector Regression with Flexible Loss Function
  • 本地全文:下载
  • 作者:Kuaini Wang ; Ping Zhong
  • 期刊名称:International Journal of Signal Processing, Image Processing and Pattern Recognition
  • 印刷版ISSN:2005-4254
  • 出版年度:2014
  • 卷号:7
  • 期号:4
  • 页码:211-220
  • DOI:10.14257/ijsip.2014.7.4.21
  • 出版社:SERSC
  • 摘要:In the interest of deriving regressor that is robust to outliers, we propose a support vector regression (SVR) based on non-convex quadratic insensitive loss function with flexible coefficient and margin. The proposed loss function can be approximated by a difference of convex functions (DC). The resultant optimization is a DC program. We employ Newton's method to solve it. The proposed model can explicitly enhance the robustness and sparseness of SVR. Numerical experiments on six benchmark data sets show that it yields promising results.
  • 关键词:Support vector regression; Loss function; Robustness; DC program
国家哲学社会科学文献中心版权所有