期刊名称:International Journal of Signal Processing, Image Processing and Pattern Recognition
印刷版ISSN:2005-4254
出版年度:2014
卷号:7
期号:5
页码:333-348
DOI:10.14257/ijsip.2014.7.5.29
出版社:SERSC
摘要:IMM (Interacting Multiple Model) algorithm is widely used in target tracking, and its basic principle is described in detail at first. However, the IMM algorithm fails to obtain the prior probability of model conversion quickly and accurately when tracking for target. In this paper, an improved IMM algorithm based on ANFIS (the adaptive neural fuzzy inference system) is proposed. The improved algorithm can update the value of system noise covariance in real-time by ANFIS module through observing the coefficient of system noise covariance. Consequently, the probability of model conversion can be obtained more quickly and accurately. Then, the comparison and analysis of the experiment results between the original IMM algorithm and the improved one have been carried out. The experiment results show that the reaction rate for maneuvering target tracking is significantly boosted and tracking error is obviously reduced because the improved algorithm can update the value of system noise covariance in real-time and improve the system adaptability.
关键词:IMM (Interacting Multiple Model); ANFIS (the adaptive neural fuzzy inference ; system) System noise covariance; Probability of model conversion