期刊名称:International Journal of Signal Processing, Image Processing and Pattern Recognition
印刷版ISSN:2005-4254
出版年度:2014
卷号:7
期号:6
页码:359-368
DOI:10.14257/ijsip.2014.7.6.31
出版社:SERSC
摘要:This study presents a tri-level thresholding method for image segmentation with invasive weed optimization (IWO) algorithm. The objective of the proposed approach is to handle the nonextensivity and vagueness of image in segmentation, in the meanwhile to reduce the computation time. In this study, the histogram of image is converted to fuzzy domain by membership function firstly. Then the thresholding method is constructed through maximizing the sum of nonextensive entropy of subsets of the each part of fuzzy histogram. The IWO algorithm is used to search the optimal thresholds to reduce the computation time in the new method. Experiments on synthetic and real-world images are given to demonstrate the effectiveness of the proposed approach compared with the other methods