首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Generative Human Action Tracking Based on Compressive Sensing
  • 本地全文:下载
  • 作者:Gaofeng Li ; Fei Wang ; WangLei
  • 期刊名称:International Journal of Signal Processing, Image Processing and Pattern Recognition
  • 印刷版ISSN:2005-4254
  • 出版年度:2015
  • 卷号:8
  • 期号:7
  • 页码:299-308
  • DOI:10.14257/ijsip.2015.8.7.29
  • 出版社:SERSC
  • 摘要:Action tracking and recognition is a challenge due to human deformation and complex scene system. Tracking-by-detection methods are used to solve appearance changes problem caused by viewpoint, occlusion, scale or deformation. Here we propose a robust object tracking and generative action recognition method. Compressive sensing is improved to track object with superpixels, and the generative structural part model is designed to be adaptive to variation of deformable object. We evaluate the method on challenging sequences. Also, we make qualitative and quantitative discussion. The results indicate the method is robust, and it is adaptive to deformable object tracking and action recognition
  • 关键词:object tracking; action recognition; compressive sensing; generative part ; model
国家哲学社会科学文献中心版权所有