首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Online Mean Kernel Learning for Object Tracking
  • 本地全文:下载
  • 作者:Lei Li ; Ruiting Zhang ; Jiangming Kan
  • 期刊名称:International Journal of Signal Processing, Image Processing and Pattern Recognition
  • 印刷版ISSN:2005-4254
  • 出版年度:2015
  • 卷号:8
  • 期号:11
  • 页码:.273-282
  • DOI:10.14257/ijsip.2015.8.11.25
  • 出版社:SERSC
  • 摘要:Features for representing the target are the fundamental ingredient when constructing the appearance model in the tracking problem. Only one type of features is utilized to represent the target in most current algorithms. However, the limited representation of a single feature might not resist all appearance changes of the target during the tracking process. To cope with this problem, we propose a novel tracking algorithm - Mean Kernel Tracker (MKT) - to robustly locate the object. The MKT combines three complementary features - Color, HOG (Histogram of Oriented Gradient) and LBP (Local Binary Pattern) - to represent the target. And Extensive experiments on public benchmark sequences show MKT performs favorably against several state-of-the-art algorithms
  • 关键词:Sparse representation; object tracking; online mean kernel learning
国家哲学社会科学文献中心版权所有