首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Rainfall Prediction Using Data Mining techniques: A Survey
  • 本地全文:下载
  • 作者:Shoba G ; Dr. Shobha G
  • 期刊名称:International Journal of Engineering and Computer Science
  • 印刷版ISSN:2319-7242
  • 出版年度:2014
  • 卷号:3
  • 期号:5
  • 页码:6206-6211
  • 出版社:IJECS
  • 摘要:Data Mining is study of how to determine underlying patterns in the data. Data mining techniques like machinelearning, alongside the conventional methods are deployed. Different Data mining techniques like GRNN, MLP, NNARX,CART, RBF, ARIMA and so on are used for the prediction of Rainfall. In this paper, analysis of various algorithms of datamining is used for rainfall prediction model. It is difficult to name a particular algorithm is suitable for prediction. Sometimeswhen certain algorithms are combined, they perform better and are more effective
  • 关键词:Generalized Regression Neural Network (GRNN); Tipping Bucket (TP); MultiLayer Perceptron (MLP); Neural;Network Auto Regressive with Exogenous input (NNARX); Bayesian; CART; C4.5; Radial Basis Function (RBF); Focused time;delay Neural Network (FTLNN); Adaptive Neuro Fuzzy Inference System (ANFIS);Autoregressive Integrated Moving Average (;ARIMA);Particle Swarm Optimization ( PSO); Ensembles of continuous Bayesian Networks ( ECBN).
国家哲学社会科学文献中心版权所有