首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Avoid personal data presumption attacks on social networks
  • 本地全文:下载
  • 作者:T. Swetha ; V. Balaji ; P.Nirupama
  • 期刊名称:International Journal of Engineering and Computer Science
  • 印刷版ISSN:2319-7242
  • 出版年度:2014
  • 卷号:3
  • 期号:6
  • 页码:6726-6728
  • 出版社:IJECS
  • 摘要:Now a d a y ’ s many people are rapidly increases the use of social networks like facebook. By using thesenetworks so many number of users are connected with their friends and relatives. Some of the user related data should beprivate in the networks. To launch presumption attacks using released social networking data to forecast personal data. Threepossible refining techniques that could be used in different situations. Discover the effectiveness of these techniques andchallenge to use methods of collective presumption to discover sensitive attributes of the data set. So then decrease theeffectiveness of both local and relational classification algorithms by using the sanitization methods can describe
  • 关键词:Social network analysis; data mining; social;network privacy
国家哲学社会科学文献中心版权所有