首页    期刊浏览 2025年07月07日 星期一
登录注册

文章基本信息

  • 标题:Study Of Fault Prediction Using Quad Tree Based K-Means Algorithm And Quad Tree Based EM Algorithm
  • 本地全文:下载
  • 作者:Swapna M. Patil ; R.V.Argiddi
  • 期刊名称:International Journal of Engineering and Computer Science
  • 印刷版ISSN:2319-7242
  • 出版年度:2014
  • 卷号:3
  • 期号:11
  • 页码:9193-9196
  • 出版社:IJECS
  • 摘要:The paper intends to do a comparative study of the two clustering algorithms, namely K-Means and EM. Quad treeis used as a common algorithm to initialize both the clustering algorithms. The dataset is then clustered and classified separatelyby K-Means and EM algorithms. The motive of this paper is to prove the effectiveness of EM over K-Means. Classification andclustering of the dataset done via EM is seen to have lower faults as compared to clustering and classification done via K-Meansalgorithm
  • 关键词:Quad Tree; K-Means clustering; Expectation Maximization Algorithm; Iris Dataset; Clustering; Classification; Hyper-Quad tree
国家哲学社会科学文献中心版权所有