首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Intrusion Detection Alarms Filtering System Based On Ant Clustering Approach
  • 本地全文:下载
  • 作者:Xiao-long XU ; Zhong-he GAO ; Li-juan HAN
  • 期刊名称:International Journal of Engineering and Computer Science
  • 印刷版ISSN:2319-7242
  • 出版年度:2015
  • 卷号:4
  • 期号:12
  • 页码:15281-15286
  • DOI:10.18535/Ijecs/v4i12.33
  • 出版社:IJECS
  • 摘要:With the increasing of network attacks, network information security has become an issue ofglobal concern. The problem with the mainstream intrusion detection system is the huge number of alarminformation, it has high false positive rate. This paper presents a data mining technology to reduce falsepositive rate and improve the accuracy of detection. The technique is unsupervised clustering method basedon hybrid ANT algorithm, it can discover clusters of intruders’ behavior without prior knowledge. we useK-means algorithm to improve the convergence speed of the ANT clustering. Experimental results show thatour proposed approach has higher detection rate and lower false alarm rate
  • 关键词:intrusion detection; alarms filtering; ant clustering; false alarms
国家哲学社会科学文献中心版权所有